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1. Introduction. Let X1, X2,...be a sequence of random variables taking

values in a finite set S, and controlled by a decision maker who at each

time t = l, 2,..., observes Xt and then picks an action a belonging to a

finite set A; then if Xt = x, the probability that Xt+1 = y beccmcs

p(y; x, a), where p is a known function. Also, choice of action a when

Xt = x earns a known &nount g(x, a) imnediately. Future income is dis-

counted by a constant factor a < 1. Thus, if at is the action chosen

after observing Xt, t = 1, 2, ..., the disccuntedreturn is defined to be

g(X1, a1) + Cg(X2, a) + c'(X 3, a3 ) + .... A policy r is a rule for

determining each of the actions at as a function of X and (possibly)
t t

the sequences X X2 , ... X,_1 and a , a, a. If the policy r is

used and X = x, the expected discounted return is given by u_(X),

say, and we are interested in maximizing u r(x) by an appropriate choice

of r. Let u*(x) = supu r(X)-

This paper describes a simple algorithm for this problem that is

basically an improved version of the standard dynamic programming iterative

scheme (see below). Upper and lower bounds on the optimal return are

produced by the algorithm at each iteration. These both converge mono-

tonely to the optimal return. Also, the policy determined at each stage

achieves a return at least as good as the corresponding lower bound. The

sequence of policies produced is actually the same sequence produced by

the dynamic programming method; the improvement consists of both better

iThis research was supported in part by a grant from the Ford Founda-
tion, and in part by the GZU , of Naval Research (Contract 233(75)).
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information about convergence of the sequence of policies, and the fact

that as regards ccmputing u*, the algorithM is app-rently much faster.

Thus, when the algorithm was aDlied to the autcmobile replacement

problem described by Howard [5, P. 893, the upper and lower bounds wtere

within 1.3% of u* after 25 iterations, at uhich time the optimal Doli*y

was reached. The mean of the upper and lower bounds was within .08% of

u* at this point. After 50 iterations the upper and lower bounds 'were

within .05% of u* and their mean was within .0035% of u*. The estimate

of u* produced by the standard dynamic programing method was 40.5%

below u* after 25 iterations; in fact, after 160 iterations, this estimate

was still below u* by 1.1%. Both methods require essentially the same

comutations.

The method of policy iteration required only 9 iterations for the

automobile replacement problem. However, while otherwise comparable, each

iteration using this method involves the "value determination" operation,

which amounts to solving N equations in N unknowns, N being the number of

states. Because of this, it is not clear which method is superior from a

computational point of view. The proposed method may have an important

relative advantage in problems with a large number of states, where the

value determination operation presents computational difficulties.

The main properties of the algorithm are described in Theorem 2 of

Section 3. A key part of this theorem is based on the very simple but

useful relationship contained in Theorem 1 of Section 2. Theorem 1 may be

of independent interest.3 The error bounds provided by parts (i) and (iv)

2In this ccmparison, the initial function used by both methods was set
at zero, and the percentage errors given are based on the state where this
error was maximal using the proposed method.

3Theorem 1 derives from some joint w1ork [6] of R. M. Redheffer and
the author.



of Theorem 2 can be applied to the policies and estimates of the optimal

return produced by other methods.

For further relevant discussion of Markovian decision problems, the

reader is referred to papers by d'Epenoux [3], Mann [7], Scarf [8], and

Wagner [9].

2. Notation and nreliminaries. For dealing with a sequence of real-

va-ued functions on S, v,, v2 ,..., it is convenient to associate irith

each v another function rn on S into A, such that

g(x, r.(x)) + a - v (y)p(y;x,r(x)) = max [g(x,a) + a E v (y)P(y;x,a)],
y na yn

and then define the function g. by gn(x) = g(x, rn (x)) and the transfor-

mation Pn by (Pnf)(x) = Zyf(y)p(y; x, rn(x)). In these terms the

dynamic programming algorithm is defined by an initial function v 1

ard the rule Vn+1 = gn + a PV n, n = 1, 2, .... A function r on S

into A is termed a stationary policy. For such a function, define

the transformation T byr

(Trf)(f) = f(x) - g(x, r(x)) - aE f(y)p(y; x, r(x)).

The expected return ur for a stationary policy satisfies the equation

T u = 0.r

Now define the transformu tion T* by

(T*f)(x) = f(x) - maxa[g(x, a) + a Z f(y)p(y; x, a)].y

Thus T*vn = vn (gn +aPvn)

Using the principle of optimality [2], iie can easily convince 4

ourselves that u* satisfies the equation T*u = 0.

Theorem 1. T*u < T*v implies u < v.

4For rigorous treatment of this and related questions see [1] and



Procf. Trensiated, the hypothesis T*u < T*v beccmes

u(x) - v(x) < ax [g(x.) + 6Z u(y)p(y;x,a)]

- DiOx rg(x,) + tE v(yp(y;x,n <=xa (u(y)'-v(y))p(y;xja).
ay Y

Suppose the maximum of the left side is m > 0. The maximum will be

achieved at a point x . Replacing u - v with m on the right we get

the contradiction,

u(xo ) - v(x ) = < max aE mP(y;x 0,a)=cYm,

and the proof is complete.

If there is only one action for each state, T* is of the same form

as T . Thus, we have
r

Corollary 1. T u < T v implies u < v.
r r

An immediate application of Theorem 1 is

Corollary 2. The dynamic programming equation T*a = 0 has at most one

(finite) solution.

Proof. If T*u = T*v 0, then u,< v and v < u by Theorem 1. Hence, u = v.

3. The algorithm. Let v1 be an arbitrary function with v1 (S) = 0

where s is a conveniently selected state, and define the sequence of

functions (vn) and the sequences of constants [L'F] and tL"1, by,
n n n

Vn+l = gn + Pnv n -(gn + a Pn v n )(s) '

L"n = min X(gn + a P nvn - vn)(x),n x n nn nn

L =maxn + a Pv - vn)(x)n xn n n n

each function v is zero at S. Now let t = (1-C,)-  and

define the sequence of functions [un and tun ] by
n n

n n n
U =v + tLn n n

Theorem 2. (i) The optimal return u* satisfies u' < u* < u".
n -- -- n
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(ii) u" <u , >u . (iii) u - *, J. - W*. (iv) ,etLUn - +l:' n -n+! n Un

u* be the exoected discounted return for the stationary policy r .

Then u* > u'.n- n

Proof. In the following, let v' = g, + c, PVn - Lv so tha i,

Vn>Vn, and let v" = gn + a, Pn v - LA, so that v" < v

Also, vn~ V v - V J.(S) = VA - v (s).
n n n n n.

(i) U' < u* < u " As was pointed nut above. u* satisfies
-n

T'u* = 0. From the definition of T* we get;

T*u =v + tL' - g. + a . rct'
n n n n n n

=v + tL' - r 4-L' + c tL']n

=v - V < 0 =T*u*.
n n-

Therefore u' < v* by Theorem 1. Similarly,n-
T " = v +tL" -[g + CPv + u tL"]

n n n n n n
=v +tL" - " + L " +a tL"]

n n n n

=v -v >0 = Tu*,
n n -

and u" > u* again by Theorem 1.
n -

(ii) <Un+I , u n > Un+I . For convenience we use 1 and 2 in

place of n and n+l. We have

u2  v2 + tL = v. + t min g 2 
+  P2 v2  v2 ]

2 ~ -11 x-22 22_v 2 + t min rgl + ' P( -v vI)
x 1 2 -12

+tL'+v 1 11
> v2 + t min Fg, + u P v v + ('-) v, (s)]

L v . + Vl(s) = v I -+ L 1 A> v + tL = uA

Similarly,

u = v2 + tL v 2 + t maxi g 2 + p v 2- v]

= v2 +tmaxA[ +aPv"-v + (1-a) v"(s)]
_<2v2 + t m 2 V 1 (l) 1 , ( s )

< v2 + t me rg2 + upv 1 -v + (1-0) v"(s)I
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<v 2 + t ax [g1 +CIP v + (1-)v 1 s

v + t I," v! + tL" =u.
1 1-1 , 1 1 ,

(iii) Convergence of un and un  to u*. Convergence itself is
n n

immediate from the monotonicity and the fact that u* is an upper

bound for u and a louer bound for u . Let u = lie u'. We show
n n w n

that u satisfies T*u = 0, and hence u = u* by Corollary 2. The

argument is similar for u". Since Ln = u' (s)/t < u*(s)/t, lim Lnn n n n

=L is finite. Let lim v = v =u - t.
OD n n

First we establish that v'(s) - 0; in fact v'(s) converges.
n n

Considering the proof of (ii) at the point x = s yields L > L1 +

(1-c) Vl(s). Proceeding inductively gives L'> LI* + (1-c) -! Vl(s).
Sn - 1 11

Since Ln is bounded and since v'(s) > 0, 7 v'(s) converges. Now,
n n n

v Av~ - Av(s) = g + ! P v - L, so we writen n+l n n n

vn+(x) - vns ) = maxa[g(x;a) + a . v (y)p(y;x,a)

+ e E (vn(y) - v (y))p(y;x,a)]- L"
y n

< max a[g(x,a) + a ' v p(y;x,a)1 - L

max max [a Z (v (y) -viy))p(y;x,a)] +L yL Ln
- y n O

Taking limits gives

v.(x) < max [g(x,a) + a Z v (y)p(y;x,a)] - L.

With min min replacing max max in the preceding, the inequalityX a x a

is reversed so that we get equality. Substitution of v = u - tL

gives u0 (x) = max [g(x,a) + a E u (y)p(y;x,a)], that is, T*u = 0.

(iv) u* > u*. Define T as indicated in Section 2, byn -n r
n

Tr f = f - (gn + a Pnf). Now, u*n = gn + P n u* n that is, Tr u*n 0.
n n

But T u < 0 as was seen in this proof of (i). Application of
r n -n

Corollary 1 gives u' < u* . This completes the proof.
n - n
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